Вторник, 17 Сент. 2019

Клевые тачки

Ваше мнение

Чьему производителю авторезины Вы доверяете?
 
Конструкция автомобиля - Фронт пламени
Индекс материала
Конструкция автомобиля
ОСОБЕННОСТИ КАЛИЛЬНОГО ЗАЖИГАНИЯ И ДЕТОНАЦИОННОГО СГОРАНИЯ И ЗАВИСИМОСТЬ МЕЖДУ НИМИ
После первой мировой войны
Хорошим топливом зарекомендовал себя этиловый спирт
Процесс сгорания — турбулентность и детонационное сгорание.
влияния тетраэтилового свинца
ОПРЕДЕЛЕНИЕ И СПОСОБЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АНОМАЛЬНЫХ ПРОЦЕССОВ СГОРАНИЯ
Калильное зажигание
Термин грохот
ВЫЯВЛЕНИЕ И ИЗМЕРЕНИЕ ПАРАМЕТРОВ ПРОЦЕССОВ ДЕТОНАЦИОННОГО СГОРАНИЯ И ПРЕЖДЕВРЕМЕННОГО КАЛИЛЬНОГО ЗАЖИГАНИЯ
детонационное сгорание
Преждевременное калильное зажигание
ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ТОПЛИВ
«Снам-Прогетти»
Подогревание катушки
ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ И ДЕТОНАЦИОННОЕ СГОРАНИЕ
Регулировка момента зажигания
расчеты степени полноты сгорания
степень сжатия
Температурные режимы двигателя
ТЕОРИИ ДЕТОНАЦИОННОГО СГОРАНИЯ
ЗОНА ПОСЛЕДНЕЙ ЧАСТИ ЗАРЯДА
ТЕОРИЯ ДЕТОНАЦИИ
Детонационные волны
ТЕОРИЯ САМОВОСПЛАМЕНЕНИЯ
Присутствие тетраэтилсвинца
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЗОНЫ ПОСЛЕДНЕЙ ЧАСТИ ЗАРЯДА И САМОВОСПЛАМЕНЕНИЯ В ДВИГАТЕЛЕ
Тетраэтиловый свинец
СПОСОБЫ ПРЕДОТВРАЩЕНИЯ ДЕТОНАЦИОННОГО СГОРАНИЯ
Анализ ситуации в США и ФРГ проведен Дартнеллом.
В соответствии с современной теорией коагуляции
ЗАКЛЮЧЕНИЕ
РАБОТА ДВИГАТЕЛЯ ОТ САМОВОСПЛАМЕНЕНИЯ
ПРЕЖДЕВРЕМЕННОЕ И ПОСЛЕДУЮЩЕЕ КАЛИЛЬНОЕ ЗАЖИГАНИЕ
ВЛИЯНИЕ ХАРАКТЕРИСТИК ЭКСПЛУАТАЦИОННЫХ РЕЖИМОВ ДВИГАТЕЛЯ
ВЛИЯНИЕ СОСТОЯНИЯ ПОВЕРХНОСТИ УЧАСТКОВ КАЛИЛЬНОГО ЗАЖИГАНИЯ
Температура воспламенения метанового топлива
Каталитическое «преждевременное калильное зажигание»
СКЛОННОСТЬ ТОПЛИВ К ПРЕЖДЕВРЕМЕННОМУ КАЛИЛЬНОМУ ЗАЖИГАНИЮ
ПРАКТИЧЕСКИЕ МЕТОДЫ СНИЖЕНИЯ ДЕТОНАЦИИ В ДВИГАТЕЛЯХ
Выполнение требований по токсичности
впрыск топлива за впускным клапаном
Устройство для непрерывной подачи однородной топливо-воздушной смеси
Зажигание
Возрастание требований к октановому числу топлива
Допустимые при производстве отклонения размеров камеры сгорания
Вихревое движение
Турбулентность
Пульсации
В гоночных спортивных автомобилях
Наилучший антидетонационный показатель
Следующий шаг на пути совершенствования экономичных двигателей
Фронт пламени
«Тексако TCCS»
ОБЩИЕ ВЫВОДЫ
ТРЕНИЕ И СМАЗКА В АВТОМОБИЛЯХ
ОСНОВЫ ТЕОРИИ СМАЗКИ И ИЗНОСА
Влияние повышения температуры поверхности
Первые научные исследования в области теории подшипников
Соотношения ЭГД-теории
Графит и дисульфид молибдена
ВЛИЯНИЕ ЭКСПЛУАТАЦИОННЫХ ФАКТОРОВ
СВОЙСТВА ЛИСТОВЫХ ФОРМОВОЧНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ
ПОГЛОЩЕНИЕ ВЛАГИ
ПРОЧНОСТЬ СОЕДИНЕНИЯ ВНАХЛЕСТКУ ПРИ СДВИГЕ
ДЕМПФИРОВАНИЕ КОЛЕБАНИЙ
ПОГЛОЩЕНИЕ ВЛАГИ
АЭРОДИНАМИКА АВТОМОБИЛЕЙ
ОСНОВНЫЕ ТРЕБОВАНИЯ К ФОРМЕ АВТОМОБИЛЯ
ВЛИЯНИЕ СОПРОТИВЛЕНИЯ НА ТОПЛИВНУЮ ЭКОНОМИЧНОСТЬ
РАСХОД ТОПЛИВА, ОБУСЛОВЛЕННЫЙ АЭРОДИНАМИЧЕСКИМ СОПРОТИВЛЕНИЕМ
УСИЛЕНИЕ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ ПРИ ВЕТРЕ
ЕЗДОВЫЕ ЦИКЛЫ ЕРА, СООТВЕТСТВУЮЩИЕ УСЛОВИЯМ ДВИЖЕНИЯ В ГОРОДЕ И ПО ШОССЕ
ВОЗМОЖНОСТИ ПОВЫШЕНИЯ ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ В РЕЗУЛЬТАТЕ УМЕНЬШЕНИЯ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
МЕХАНИЗМЫ ОБРАЗОВАНИЯ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
СОСТАВЛЯЮЩИЕ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПЕРЕДНЕЙ ЧАСТИ КУЗОВА
Принципы минимизации аэродинамического сопротивления
АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ЗАДНЕЙ ЧАСТИ КУЗОВА
Трехмерный отрыв потока
Критические конфигурации
Один из случаев критической конфигурации
увеличение донного давления
метод уменьшения сопротивления
Эксперименты Сайкса
Кузова автомобилей весьма разнообразны
Результаты исследований
ВИХРЕВОЕ СОПРОТИВЛЕНИЕ
Движущая сила потока
ВЛИЯНИЕ БЛИЗОСТИ ЗЕМЛИ
численное решение
близость поверхности земли оказывает большое влияние на величину подъемной силы
влияние угла набегания потока
ТУРБУЛЕНТНОСТЬ НАБЕГАЮЩЕГО ПОТОКА
МАЛЫЕ СОСТАВЛЯЮЩИЕ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
Испытания в аэродинамических трубах
Вращающиеся колеса
АЭРОДИНАМИЧЕСКАЯ НАСТРОЙКА ФОРМЫ АВТОМОБИЛЯ
ЭМПИРИЧЕСКИЕ ПРАВИЛА СОЗДАНИЯ КОНСТРУКЦИЙ МАЛОГО СОПРОТИВЛЕНИЯ
ПРИМЕНЕНИЕ ЭВМ ДЛЯ АЭРОДИНАМИЧЕСКИХ РАСЧЕТОВ
поток вблизи поверхности автомобиля и прицепа
СТРАТЕГИЧЕСКИЕ НАПРАВЛЕНИЯ ДОСТИЖЕНИЯ НИЖНИХ ПРЕДЕЛОВ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
ПОБОЧНЫЕ АЭРОДИНАМИЧЕСКИЕ ЭФФЕКТЫ
ЗАКЛЮЧЕНИЕ И ВЫВОДЫ
МЕТОДЫ ПОДБОРА СИЛОВОЙ ПЕРЕДАЧИ И ПРОГНОЗИРОВАНИЯ ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ
РАБОЧИЙ ОБЪЕМ И ЭФФЕКТИВНОСТЬ ТЕПЛОИСПОЛЬЗОВАНИЯ ДВИГАТЕЛЯ
КОРОБКИ ПЕРЕДАЧ
два режима переключения передач:
Потери в трансмиссии
Бесступенчатые коробки передач
диапазон передаточных чисел бесступенчатой передачи
ПОТЕРИ НА РАБОТУ ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ
ВЛИЯНИЕ ХАРАКТЕРИСТИК АВТОМОБИЛЯ НА ТОПЛИВНУЮ ЭКОНОМИЧНОСТЬ
РАСЧЕТЫ НА ЭВМ ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ И ХАРАКТЕРИСТИК АВТОМОБИЛЯ
Случай трансмиссии с ручным переключением передач
расчет начинается о двигателя
ОГРАНИЧЕНИЯ НА ХАРАКТЕРИСТИКИ СИЛОВОЙ ПЕРЕДАЧИ
РЕЗУЛЬТАТЫ ПОДБОРА СИЛОВОЙ ПЕРЕДАЧИ
ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ДВИГАТЕЛЕМ
ТРЕБОВАНИЯ К ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ И ПОКАЗАТЕЛЯМ АВТОМОБИЛЯ
ТЕОРИЯ УПРАВЛЕНИЯ
ОБЗОР МЕТОДОВ УПРАВЛЕНИЯ
Задача оптимизации
КОНЦЕПЦИЯ УПРАВЛЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ КАТАЛИТИЧЕСКИХ НЕЙТРАЛИЗАТОРОВ ТРОЙНОГО ДЕЙСТВИЯ
РАБОТА В РЕЖИМЕ ЗАМКНУТОГО ЦИКЛА
РАБОТА В РЕЖИМЕ ОТКРЫТОГО ЦИКЛА
Обычный карбюратор
После завершения периода подачи топлива
ЭЛЕКТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ
Все страницы

 

Фронт пламени при прохождении вдоль горячей перемычки между клапанами ускоряется и увлекает последнюю часть заряда, в результате чего детонационное сгорание возможно лишь при малых частотах вращения вала двигателя и больших нагрузках.

Эта система идеальна для работы на бедных смесях, и, если ее преимущества не используются для достижения максимально возможной мощности при заданной степени сжатия, она позволяет значительно улучшить экономичность, в противном случае улучшение экономичности невелико.

Послойное распределение заряда. На начальном этапе своей деятельности по улучшению топливной экономичности Рикардо выдвинул идею разделения заряда на зону топливовоздушной смеси и зону воздуха, что позволяло отказаться от дросселирования. Эта идея была реализована в изобретении, — английский патент № 2125, AD 1915 г. Он добивался разделения заряда не аэродинамическими средствами, а с помощью дополнительной камеры. Позже эта идея была реализована в большом двухтактном авиационном двигателе, который при малой (и полной) нагрузке работал без дросселирования, дросселирование применялось лишь при умеренных нагрузках.

Современный вариант реализации этой идеи путем впрыска топлива в предкамеру дизельного двигателя с вихревой камерой сгорания описан в работе.

При идеальном разделении заряда топливная смесь должна находиться в районе свечи зажигания, а воздух в зоне последней части заряда, что уменьшает вероятность детонационного сгорания. Такого идеального разделения добиться, конечно, невозможно, и о работах в этом направлении почти ничего не было слышно, пока интерес к ним не возродился в связи с двумя различными задачами. Во-первых, это задача создания для нужд военной техники двигателя, который мог бы работать на топливах с любыми октановыми и цетановыми числами и, во-вторых, задача создания двигателя, который при работе на этилированном или неэтилированном топливе удовлетворял бы требованиям ЕРА по токсичности отработавших газов. Результатом явилось создание двигателя фирмой «Тексако» системы TCCS и двигателя PROCO (FCP) фирмой «Форд мотор». Оба двигателя являются двигателями с искровым зажиганием и с высокой степенью сжатия (10 : 1—12 : 1), в которых впрыск топлива производится непосредственно в цилиндр, а камера сгорания расположена в поршне; в двигателе TCCS может также осуществляться турбонаддув.

Фирмой «МАН» (ФРГ) был создан вариант двигателя с искровым зажиганием «МАН—FM» на основе дизельного двигателя системы «М». Принципы разделения заряда в этих двигателях различны, кратко они могут охарактеризованы следующим образом.